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On the Convergence Properties of the 
Quadrilateral Elements of Sander and Beckers* 

By Zhong-ci Shi 

Abstract. A class of nonconforming quadrilateral membrane elements, introduced by Sander 
and Beckers, is discussed in all details. It is proved that two elements that do not pass the 
patch test may still yield convergence under a suitable condition on mesh subdivisions, 
whereas one such element is found to be divergent for all mesh subdivisions. All other finite 
elements in this class that pass the patch test are convergent. The mathematical analysis 
provides a clear explanation of the convergence behavior appearing in the numerical examples 
of Sander and Beckers. 

1. Introduction. Quadrilateral finite elements are attractive for discretizations of 
domains of arbitrary shapes, but these approximations are hardly conforming. 
Therefore, such elements have to be tested for convergence. In connection with a 
variational interpretation of the patch test [2], Sander and Beckers [3] have recently 
introduced a class of nonconforming quadrilateral membrane elements, having 8 to 
16 degrees of freedom, and have shown by numerical computations for a trapezoidal 
membrane problem that two elements that do not pass the patch test still exhibit 
convergence and yield good approximations, whereas one such element diverges. 
This result is of great interest and leads to the question whether the patch test is 
necessary for convergence of these nonconforming elements. As stated in [3], 
additional investigations are certainly required to understand their behavior. 

The present paper establishes a detailed mathematical analysis of these elements. 
We formulate a condition on mesh subdivisions, under which two elements, that do 
not pass the patch test, indeed yield convergence, whereas another element is proved 
to be divergent whatever the mesh subdivision may be. All other quadrilateral 
elements in this class that pass the patch test are convergent. 

The theoretical analysis clearly explains the convergence behavior discussed in the 
numerical computations of Sander and Beckers. In their examples a bisection 
scheme of mesh subdivisions is used for the discretization of the trapezoidal 
membrane. In such cases the proposed condition on the mesh subdivisions is 
automatically fulfilled, and thus convergence occurs for two elements. It is seen, 
therefore, that the range of applicability of the patch test as a necessary condition 
for convergence is limited. At this point it is worth noting that Stummel [5] has 
presented basic examples which show that spaces of nonconforming trial functions 
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may pass the patch test but still fail to converge. An explicit analysis of these 
examples is given in [4]. 

We also discuss the problem of unisolvence of the shape functions of the 
quadrilateral elements considered. It is found that the conditions on mesh subdivi- 
sions for convergence of some quadrilateral elements guarantees the unisolvence of 
the shape functions too. 

2. Preliminaries. Let there be given a polygonal domain G c R2. We decompose G 
into convex quadrilateral elements with diameters < h. For each quadrilateral K let 
hK, h'K andOiK denote the diameter of K, the smallest length of the sides of K, and 
the angles associated with the vertices of K, respectively. We assume that the 
decomposition of G satisfies the following regularity conditions (see [1, p. 247]): 
there exist constants a' and y such that 

(1) hK h, a hK max |cos 1K| < y < 1 

uniformly with respect to h and for all elements K. 
Let K be a convex quadrilateral with the vertices pi = (xi, yi), 1 < i < 4, and the 

midpointspii,I at the sides pipi+, 1 < i < 4 (mod4). Let K = [- 1,1] x [- 1, 1] be 
the reference square with the vertices Pi, 1 < i < 4. Then, there exists a unique 
mapping FK E Q1( K) given by 

X = 4[(+ + )( +- q)X + ( -) +q)X2 

(2) +(1 - 0)(l - X)x3 + (1 + )(l - X4] 

y = 4[(1 + 0)(1 + O)YI + (1 - 0)(1 + O)Y2 
+ (1 - )(1 - q)y3 + (1 + 0)(1 - )Y41 

such that 

(3) FK( Aj 

= 
pig A< 4 FK(k)= Kg 

where Qr( K) denotes the space of all polynomials on K with highest degree r in each 
of the variables t and q. 

Denoting the Jacobian of the mapping FK by 

ax ax 

JK(' r) =ay ay, 
ag aq 

it is known [1] that under the regularity assumption of the decomposition the 
following estimates hold: 

(4) Clh 2 < JK < C2 h K 

Here and later by Ci, C are meant generic constants independent of h; C may have 
different values at different places. 

To each function v(x, y) defined on K we associate v(t, q) by 

(5) v(t, 7) = v(x(t, -q), y(t, ,)) or v EK. 

The following lemmas are needed which can easily be derived from the inequality 
(4), the inverse property and the interpolation theory on the reference square K. 
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FIGURE 1 

LEMMA 1. Let v E H'(K), and v be associated to v by the relation (5). Then 

(6) VIto,k < ChK'IVIO,K, 11V1i,k < CIvIl,K. 

LEMMA 2. For any function v E Qr(K) the inverse inequalities hold: 

(7) jVjt+1,K < ChK'jlvt,K, t = 0,1. 

Next, for every function v E L2(K) define the operator 

(8) PO: v - v dnd'r, 

and let the operator PO be such that 

(9) (Pov)= P0v forv =tv I Fj 

Therefore, 

(10) P0V = fJK1Vdx dy. 
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Notice that for the case of a parallelogram K, the Jacobian JK is a constant 

(11) JK= IKI IKI=I ldxdy, 
4' 

so that 

(12) POv = IKI dy 

which shows that Pov is the mean value of v over K. In general, for quadrilateral K, 
the equality (12) does not hold. 

LEMMA 3. Let v E H'(K). Then 

(13) I|V - POVIIO,K < ChKIVIl,K, 

(14) J (V - POV) ds < ChKIV 1,K 
aK 

3. Unisolvence of the 8 d.o.f. Quadrilateral Element. We begin with the study of 
the 8 d.o.f. (degrees of freedom) quadrilateral element used in [3]. The shape 
function on each element K has the form 

(15) u = a, + a2x + a3y + a4x2 + a5xy + a6y2 + a7x2y + a8xy2, 

determined by 8 nodal parameters, namely the function values ui (1 < i < 4) at the 
vertices and uii, 1 (1 < i < 4, mod 4) at the midpoints of the sides of K. 

Let us first discuss the problem of unisolvence of the shape function (15) by the 
set of nodal parameters ui and uii+ 1 (1 < i < 4, mod 4). It is easily verified that for 
any parallelogram K the shape function (15) is unisolvent since the coefficient matrix 
MK of the linear equations for determining the unknowns ai (1 < i < 8) in (15) is 
nonsingular, that is, 

det(MK) $ O. 

For general quadrilaterals we give a sufficient condition for the unisolvence of 
(15) as follows: 

Condition (A). The distance dK between the midpoints of the diagonals of K is of 
order o(hk). 

Evidently, dK = 0 if and only if K is a parallelogram. 

LEMMA 5. Under Condition (A) the shape function (15) is unisolvent for small mesh 
sizes hK. 

Proof. Let there be given a quadrilateral K. Suppose that one of the vertices of K, 
say P4, is located at the origin of the coordinate system. We associate K with a 
parallelogram K' such that three vertices of K' coincide with those of K: p = Pi 
(i = 2, 3, 4) and the vertex pj differs frompI by 
(16) xI= xI + eXhK Yh Yi + e,h 

Condition (A) implies that 

(17) ex= o(1), ey = o(1). 
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Then, we make the transformation of coordinates 

(18) gK: x =x/hK, Y y/hK, 

so that 

gK(K) = K, gK(K') = K', 
with the change of vertices: 

Pi ' K (Pi) =AF, Pi'-> 9K (PI,) =Ffi, i 4. 

Obviously, 

(19) pi =Pi (i = 2,3,4), p1 =P- + (ex, ey) 

Thus, the quadrilateral K may be viewed as a deformation of the parallelogram K 
with only the first vertex p, of K differing slightly from p', of K'. 

By virtue of the mapping (18) and the regularity assumption of the decomposition, 
the coordinates of the vertices fi' of K' satisfy the following restrictions: 

(20) ,2 <,= 1,2, 3, 

(21) 42 4yt2 0 

As stated above, for any parallelogram K the coefficient matrix MK- for determin- 
ing the shape function (15) on K' is nonsingular: 

(22) det(MK-) * 0. 

Since the determinant det(Mj-), depending on the coordinates of the vertices and 
the midpoints of the sides of K', is a continuous function of the variables x,, y-' 
(i = 1, 2, 3), and the latter vary in the closed set defined by (20), it follows from (22) 
that 

(23) jdet(MK,)| > Cl > 0 

independently of hK. 
On the other hand, for any fixed parallelogram K', the determinant det(MK) may 

be viewed as a polynomial in two variables eX, ey the perturbations defined by (19), 
with the constant term det(MK ). Since ex = o(l), ey = o(l) for hK -? 0 and using 
the inequality (23), we deduce that 

(24) Idet(MK ) I > C2 > 0 

for small meshes. Noting that 

det(MK) = hl 4det(MK), 

we conclude that the shape function (15) is unisolvent on K, and hence on K for 
small meshes. Thus Lemma 5 is proved. 

LEMMA 6. Let a convex quadrilateral K be decomposed into 22n elements by dividing 
the sides of K in 2n equal segments. Then the resulting elements satisfy Condition (A) 
for large n. 

The proof is straightforward and therefore omitted. 
It is worth mentioning that in many applications a bisection strategy is used for 

mesh generations, if there is no special information available on how to choose the 
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mesh sizes. In such cases, by Lemma 6, Condition (A) is satisfied automatically. In 
the following it is always assumed that the shape function is unisolvent by its degrees 
of freedom. 

4. Convergence of the 8 d.o.f. Quadrilateral Element. Now we are in a position to 
prove the convergence of the element (15). Our tool is Stummel's generalized patch 
test [6], [7], which together with the approximability condition (the latter is satisfied 
by (15) and any reasonable finite element approximation) provides a necessary and 
sufficient condition for convergence of nonconforming approximations applied to a 
large class of general elliptic boundary value problems. 

Let Vh be the finite element spaces of all functions defined on G, whose 
restrictions to each element K are the shape functions of (15). For a second order 
problem, the generalized patch test consists in showing that, for every bounded 
sequence uh E Vh and for h -* 0, the following relation 

(25) T1(4 Uh) = 2 jUhNrds - 0, r = 1,2, 
K aK 

holds for all test functions 4 Ee Cj'(G) (4 Ee C (R2) in case of Dirichlet boundary 
conditions), where N, denote the components of the unit outward normal vector on 
the boundary of K. 

THEOREM 1. The 8 d.o. f. quadrilateral element (15) passes the generalized patch test 
(25) and hence converges. 

Proof. We rewrite the bilinear form Tr(4, Uh) as follows 

(26) ~~~~Tr(A,, Uh) = E E" tuNr ds 
K FeaK F 

and consider first the case where F c aK is a common side of two adjacent 
quadrilaterals K and K', and second the case that F c aK is a portion of the 
boundary aG. 

In the first case, let us denote by U/K and uK' the restrictions of the function Uh to 
K and K', respectively. Then, since UK - UK' is a polynomial of third degree in one 
variable on F vanishing at the endpoints and the midpoint of F, Simpson's rule gives 

(27) fUh fUh) ds =0. 

For every function v E L2(F), let 

(28) P0V IFI v ds, |Fl Jds, 

be the mean value of v over F. Equality (27) implies that the mean values of uh are 
continuous on F and, consequently, the two corresponding integrals IFFP uhKN,K ds 
and IF P h4, u/K' ds cancel. 

In the second case F c 8G, the integral 

pF 
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since P'Uh = 0 for Dirichlet boundary conditions and 4 E Co' (G) otherwise. There- 
fore, 

(29) E fPJ4UhNds = 0. 
K FcaK F 

Similarly, we have 

(30) E f( )POF)PUhhNrdS= 0 
K Fc aK F 

so that 

(31) Trl(4uh)=-E E JRFORouh Nr dS 
K Fc aK F 

where 

(32) Rov = v - Pof. 

We now estimate the integrals involved in the right-hand side of (31). For every 
function v E L2(K) it is easily seen that 

(33) fJ(ROV)2 ds < f(V - PKV)2 ds, 

where 

PjKv = 4 f JK 'v dx dy 

as defined in (10). Applying Lemma 3 to (33) and Schwarz's inequality, we obtain 

fRFOARO UhNK dS < ChKIWII1,KIUhISK, 

and so 

(34) |Tr(C Uh)1 < ChW1 141,hllh 

where the seminorm * 1, h is defined by 

I Hi,h = I,I K. 
K 

Hence, the generalized patch test (25) is satisfied. 
Remark 1. The element (15) passes the patch test. 
Remark 2. The element (15) can also be used for approximations of eigenvalue 

problems, since the finite element spaces Vh satisfy the strong continuity condition 
(see [7]) on interelement boundaries too. 

5. Two 12 d.o.f. Convergent Quadrilateral Elements. Two 12 d.o.f. quadrilateral 
elements have been studied in [3]. The shape functions of these two elements have, 
respectively, the form 

(35) u = a, + a2x + a3y + a4X2 + a5xy + a6y2 + a7X2y + a8xy2 

+a9x3 + a1oy3 + aj1x3y + a12xy3, 

(36) u = a, + a2x + a3y + a4X2 + a5Xy + a6y2 + a7X2y + a8xy2 

+ (x2 _ a2)(y2 - b2)(y1 + y2x + y3y + Y4xy), 
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where 2a and 2b in (36) are the lengths of the medians of the quadrilateral K. The 
12 coefficients involved in (35), (36) are determined by the same set of 8 nodal 
parameters as for the element (15). The remaining indetermined 4 coefficients are 
used as internal d.o.f. which are condensed at the element level. Hence the stiffness 
matrices are of dimensions 8 by 8. We notice that Condition (A) is still sufficient for 
the unisolvence of the two shape functions (35) and (36), since the last 4 coefficients 
in (35) and (36) may be considered as internal d.o.f. 

As mentioned in [3], the elmenets (35) and (36) pass the patch test for rectangular 
meshes but do not pass it for general quadrilaterals. Nevertheless, a trapezoidal 
membrane problem has been successfully solved using these two quadrilateral 
elements in conjunction with a bisection scheme for mesh generations. Now we give 
a mathematical analysis of the two elements to justify the numerical observations of 
Sander and Beckers in [3]. 

THEOREM 2. Under Condition (A) the quadrilateral elements (35) and (36) pass the 
generalized patch test (25) and hence converge. 

Proof. Let us first consider the element (35). The bilinear form Tr(, uh) may be 
written as follows: 

(37) 7( P,Uh) = fEpUhNrds = fR oFR uhNrds 
K Fc aK F K Fc aK F 

+ ERF UJNrdS + E E fP4UhNrds 
K Fc aK F K Fc aK F 

- TV') + T(2) + T(3) 

We estimate each of the terms TM (i = 1,2, 3). 
(i) Using the same argument as in the proof of Theorem 1, we get immediately 

(38) IT"'I E E fR FORoUhNrdds < Ch Ii IIUhlI,h' 
K FcaK F 

(ii) The approximation Uh is a polynomial of fourth degree in one variable on 
every side F, e.g. F = Pi P2' Simpson's rule then gives 

p~~ pF =1 
(39) P Uh = 6 (Uh(P) + 4Uh(P12) + Uh(P2)) 

- I24 (xl - x2)(y, - y2)[al(Xl - X2 )2 + a12(y1 - Y2)2] 

= S Uh + S2f Uh. 

The first term SF Uh is continuous on F, so that we have 

E fR FSI suNr ds = O 
K FcaK F 

which implies 

(40) T = E fROF FUhNdS. 
K FcaK F 
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Since 

1 a4Uh 1 84Uh 

a =6 ax3ay' al=6 axay3' 
it follows that 

|a,,l i l/2 luhl4,K ~ |a,21 < I Uht 1h4, K' 

The inverse inequalities in Lemma 2 then give 

(41) lall ChK41u| a2 Ch-41Ui 

By virtue of the form of S2 Uh in (39), application of (41) yields 

IS2 Uh < ClUhl I,K, 

so that 

(42) | T R 00 |RA2 UhNrdSl < ChWIXl lUhll,h- 
K Fc aK F 

(iii) We now analyze the term T(3). By (39), 

(43) T(3 f PO'4UhNrdS= P& 4S2 U,hFJNr 
K FcaK F K FcaK 

since 

EE PJASfuI hIFINrF = O. 
K Fc aK 

Setting Fi =pi Pi, (1 < i < 4 mod 4) and r = 1, we have 

(44) |FI|NIF = y,+ - y,. 

Thus, for the two opposite sides F1 and F3 of K, the sum of the corresponding terms 
in (43) has the form 

(45) POFI0S2FIUhIFIINIFI + POF3AS[ 3uIF|NIN3 

= -0F*XI X2)3(Yl -Y2) - P0F3X(x4 - X3)3(Y4 )2] 

+ [P0F.p( XI - 
X2)(YI - Y2) - POF34.i(X4 - X3)(Y4 -Y3)4 a,2) 

Noting that 

(46) 1 p0F344 ' (PI+S(P2 PI))dS j 1(P3 + S(P4 P3)) ds 

< C411IK, 

(4) |px; 1a' i = 1, 2, 3,4, 

and that Condition (A) yields 

(48) xl - X2 = X4 - X3 + o(hK), Yl Y2 = Y4 Y3 + (hK) 
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we deduce from (41), (45)-(48) that 

(49) |P 02 hI|F| + Po 302 31hF3NlF 

<1 ChK411,sK1Uh11,K + o(hK)4+{-tUh11,K- 

Similarly, for the two opposite sides F2 and F4 of K we get the corresponding 
estimate: 

|P F2 
+22UhF21NiF2 + p F4 5 4IN*F41N (50) I PO2if2hJ N + P0f4 Sf4uhIF4Il4 
< ChKlj411,KUh1I1K + O(hK){44rXUh1,K. 

Therefore, for r = 1 we have 

(51) |T(3)| < ChI4|1 lUUhl,h + 0(1)1I00 lUIlIl,h 

Evidently, the above estimate also holds for r = 2. Combining the inequalities (38), 
(42) and (51), we have proved that 

(52) jT7(4 Uh)I <s ChI411 lUhll,h + O(1)414I lUhll,h, r = 1,2, 

which means that the element (35) passes the generalized patch test (25). 
In the same manner it can be proved that also the element (36) passes the test (25). 
For the elements (35), (36), the approximability and strong continuity conditions 

are satisfied. Therefore, according to Stummel's theory [7], we have proved that 
under Condition (A) the elements (35) and (36), which do not pass the patch test, 
converge indeed. Consequently, these nonconforming finite elements may be used 
for approximations of general second order elliptic equations and associated eigen- 
value problems. 

Remark 1. Condition (A) guarantees not only the unisolvence of the shape 
functions (35), (36), but also the satisfaction of the generalized patch test. As the 
mesh is refined, the shape of the quadrilaterals more and more resembles parallelo- 
grams; however, the patch test is still violated. 

Remark 2. If instead of the function values at mid-side nodes the averages over the 
corresponding sides of K are used as degrees of freedom, the resulting 12 d.o.f. 
quadrilateral elements pass the patch test. The convergence can be proved using the 
same argument as in Section 4. 

6. A Divergent 16 d.o.f. Quadrilateral Element. It remains to consider a 16 d.o.f. 
quadrilateral element whose shape function has the form 

(53) u=a, + a2x + a3y + a4X2 + a5xy + a6Y2 + a7x3 + a8X2y + a9Xy2 

+aloy3 + alx4 + a12x3y + a13xy3 + a 4y4 + a15X4Y + a16xy4 

with the 8 nodal parameters as before and 8 internal d.o.f. The element does not 
pass the patch test even for rectangular meshes. Numerical results in [3] showed that 
the element does not yield convergent approximations. This is confirmed by the 
following theorem. 

THEOREM 3. The element (53) does not pass the generalized patch test (25) and hence 
diverges. 

Proof. We show that there exists a sequence of trial functions Uh E Vh and a test 
function 4 such that the test (25) does not hold. 
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Let a unit square G = (0,1) x (0,1) be given, and consider a decomposition of G 
by square meshes with the sizes 

hn = n =2, 3.... 

Then choose the fixed subdomain G, = [4, 3] x [4, 3] in G. There are N, = 22(n- 1) 

(n > 2) square elements K in G,. Let K c G, be described in local coordinates as 
the set [0, hn] x [0, hn]. With respect to these coordinates we define a special 
sequence of trial functions Uh as 

(54) uh(x y) = x(hn - X) 
n (x, y) E [0, hn] x [0, hn], 

outside G,, letUh = O. 

We further select a test function G E CO (G) such that 

(55) I on G,. 

In case of Dirichlet boundary conditions, in addition, choose 

4,-0 onR2\G. 

Because of the special choices of Uh and A, the bilinear form becomes 

(56) Tr(, uh) E | j UhNdS 120 n KEG, 480 n 

and 

lahIl0K 30240h n 

Using the inverse property, we have 

IUh1,K < Chn' IuhIIo0K ' Chn 

and so 

(57) IIUhIlh,h E Uh| 1,K ,< Chfn(1 + o(hn)) 
K 

Consequently, 

(58) 7(Uh) >, C(i + o(h2)), C * 0, 

for hn - 0. This shows that the element (53) fails to pass the generalized patch test 
and thus does not converge. 

Remark 1. Like Remark 2 in Theorem 2, if the averages over the sides of the 
quadrilaterals are chosen as d.o.f. instead of the function values at mid-side nodes, 
the resulting 16 d.o.f. quadrilateral element becomes convergent. 
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